Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
ESMO Open ; 7(1): 100359, 2022 02.
Article in English | MEDLINE | ID: covidwho-1560850

ABSTRACT

BACKGROUND: The durability of immunogenicity of SARS-CoV-2 vaccination in cancer patients remains to be elucidated. We prospectively evaluated the immunogenicity of the vaccine in triggering both the humoral and the cell-mediated immune response in cancer patients treated with anti-programmed cell death protein 1/programmed death-ligand 1 with or without chemotherapy 6 months after BNT162b2 vaccine. PATIENTS AND METHODS: In the previous study, 88 patients were enrolled, whereas the analyses below refer to the 60 patients still on immunotherapy at the time of the follow-up. According to previous SARS-CoV-2 exposure, patients were classified as SARS-CoV-2-naive (without previous SARS-CoV-2 exposure) and SARS-CoV-2-experienced (with previous SARS-CoV-2 infection). Neutralizing antibody (NT Ab) titer against the B.1.1 strain and total anti-spike immunoglobulin G concentration were quantified in serum samples. The enzyme-linked immunosorbent spot assay was used for quantification of anti-spike interferon-γ (IFN-γ)-producing cells/106 peripheral blood mononuclear cells. Fifty patients (83.0%) were on immunotherapy alone, whereas 10 patients (7%) were on chemo-immunotherapy. We analyzed separately patients on immunotherapy and patients on chemo-immunotherapy. RESULTS: The median T-cell response at 6 months was significantly lower than that measured at 3 weeks after vaccination [50 interquartile range (IQR) 20-118.8 versus 175 IQR 67.5-371.3 IFN-γ-producing cells/106 peripheral blood mononuclear cells; P < 0.0001]. The median reduction of immunoglobulin G concentration was 88% in SARS-CoV-2-naive subjects and 2.1% in SARS-CoV-2-experienced subjects. SARS-CoV-2 NT Ab titer was maintained in SARS-CoV-2-experienced subjects, whereas a significant decrease was observed in SARS-CoV-2-naive subjects (from median 1 : 160, IQR 1 : 40-1 : 640 to median 1 : 20, IQR 1 : 10-1 : 40; P < 0.0001). A weak correlation was observed between SARS-CoV-2 NT Ab titer and spike-specific IFN-γ-producing cells at both 6 months and 3 weeks after vaccination (r = 0.467; P = 0.0002 and r = 0.428; P = 0.0006, respectively). CONCLUSIONS: Our work highlights a reduction in the immune response in cancer patients, particularly in SARS-CoV-2-naive subjects. Our data support administering a third dose of COVID-19 vaccine to cancer patients treated with programmed cell death protein 1/programmed death-ligand 1 inhibitors.


Subject(s)
B7-H1 Antigen , BNT162 Vaccine , COVID-19 , Immune Checkpoint Inhibitors , Neoplasms , Programmed Cell Death 1 Receptor , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/prevention & control , Follow-Up Studies , Humans , Immune Checkpoint Inhibitors/administration & dosage , Immune Checkpoint Inhibitors/immunology , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Neoplasms/drug therapy , Neoplasms/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , SARS-CoV-2/immunology
2.
Curr Oncol Rep ; 23(7): 79, 2021 05 03.
Article in English | MEDLINE | ID: covidwho-1384599

ABSTRACT

PURPOSE OF REVIEW: Immune checkpoint inhibitors (ICIs) have improved the survival of several cancers. However, they may cause a wide range of immune-related adverse events (irAEs). While most irAEs are manageable with temporary cessation of ICI and immunosuppression, cardiovascular toxicity can be associated with high rates of morbidity and mortality. As ICIs evolve to include high-risk patients with preexisting cardiovascular risk factors and disease, the risk and relevance of ICI-associated cardiotoxicity may be even higher. RECENT FINDINGS: Several cardiovascular toxicities such as myocarditis, stress cardiomyopathy, and pericardial disease have been reported in association with ICIs. Recent findings also suggest an increased risk of atherosclerosis with ICI use. ICI-associated myocarditis usually occurs early after initiation and can be fulminant. A high index of suspicion is required for timely diagnosis. Prompt treatment with high-dose corticosteroids is shown to improve outcomes. Although the overall incidence is rare, ICI cardiotoxicity, particularly myocarditis, is associated with significant morbidity and mortality, making it a major therapy-limiting adverse event. Early recognition and prompt treatment with the cessation of ICI therapy and initiation of high-dose corticosteroids are crucial to improve outcomes. Cardio-oncologists will need to play an important role not just in the management of acute cardiotoxicity but also to reduce the risk of long-term sequelae.


Subject(s)
Atherosclerosis/diagnosis , Cardiotoxicity/diagnosis , Immune Checkpoint Inhibitors/therapeutic use , Myocarditis/diagnosis , Neoplasms/drug therapy , Atherosclerosis/chemically induced , Atherosclerosis/immunology , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Cardiotoxicity/etiology , Cardiotoxicity/immunology , Humans , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/immunology , Myocarditis/chemically induced , Myocarditis/immunology , Neoplasms/immunology , Pandemics , Risk Factors , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology
3.
Sci Adv ; 7(34)2021 08.
Article in English | MEDLINE | ID: covidwho-1365116

ABSTRACT

The COVID-19 pandemic has spread worldwide, yet the role of antiviral T cell immunity during infection and the contribution of immune checkpoints remain unclear. By prospectively following a cohort of 292 patients with melanoma, half of which treated with immune checkpoint inhibitors (ICIs), we identified 15 patients with acute or convalescent COVID-19 and investigated their transcriptomic, proteomic, and cellular profiles. We found that ICI treatment was not associated with severe COVID-19 and did not alter the induction of inflammatory and type I interferon responses. In-depth phenotyping demonstrated expansion of CD8 effector memory T cells, enhanced T cell activation, and impaired plasmablast induction in ICI-treated COVID-19 patients. The evaluation of specific adaptive immunity in convalescent patients showed higher spike (S), nucleoprotein (N), and membrane (M) antigen-specific T cell responses and similar induction of spike-specific antibody responses. Our findings provide evidence that ICI during COVID-19 enhanced T cell immunity without exacerbating inflammation.


Subject(s)
COVID-19/immunology , Immune Checkpoint Inhibitors/immunology , Melanoma/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adaptive Immunity/drug effects , Adaptive Immunity/immunology , Aged , Antibodies, Viral/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , COVID-19/complications , COVID-19/virology , Female , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immunologic Memory/drug effects , Immunologic Memory/immunology , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Male , Melanoma/complications , Melanoma/drug therapy , Middle Aged , Prospective Studies , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , T-Lymphocytes/drug effects , T-Lymphocytes/virology
4.
Nat Commun ; 12(1): 1087, 2021 02 17.
Article in English | MEDLINE | ID: covidwho-1333934

ABSTRACT

The introduction of immune checkpoint inhibitors has demonstrated significant improvements in survival for subsets of cancer patients. However, they carry significant and sometimes life-threatening toxicities. Prompt prediction and monitoring of immune toxicities have the potential to maximise the benefits of immune checkpoint therapy. Herein, we develop a digital nanopillar SERS platform that achieves real-time single cytokine counting and enables dynamic tracking of immune toxicities in cancer patients receiving immune checkpoint inhibitor treatment - broader applications are anticipated in other disease indications. By analysing four prospective cytokine biomarkers that initiate inflammatory responses, the digital nanopillar SERS assay achieves both highly specific and highly sensitive cytokine detection down to attomolar level. Significantly, we report the capability of the assay to longitudinally monitor 10 melanoma patients during immune inhibitor blockade treatment. Here, we show that elevated cytokine concentrations predict for higher risk of developing severe immune toxicities in our pilot cohort of patients.


Subject(s)
Immunotherapy/methods , Melanoma/therapy , Monitoring, Immunologic/methods , Spectrum Analysis, Raman/methods , Chemokine CX3CL1/immunology , Chemokine CX3CL1/metabolism , Cohort Studies , Cytokines/immunology , Cytokines/metabolism , Granulocyte Colony-Stimulating Factor/immunology , Granulocyte Colony-Stimulating Factor/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/immunology , Immune Checkpoint Inhibitors/therapeutic use , Ipilimumab/adverse effects , Ipilimumab/immunology , Ipilimumab/therapeutic use , Melanoma/immunology , Melanoma/metabolism , Microscopy, Confocal/methods , Pilot Projects , Reproducibility of Results
6.
Biomed Pharmacother ; 142: 111957, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1330662

ABSTRACT

The outbreak of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Wuhan, China, in December 2019, and its global dissemination became the coronavirus disease 2019 (COVID-19) pandemic declared by the World Health Organization (WHO) on 11 March 2020. In patients undergoing immunotherapy, the effect and path of viral infection remain uncertain. In addition, viral-infected mice and humans show T-cell exhaustion, which is identified after infection with SARS-CoV-2. Notably, they regain their T-cell competence and effectively prevent viral infection when treated with anti-PD-1 antibodies. Four clinical trials are officially open to evaluate anti-PD-1 antibody administration's effectiveness for cancer and non-cancer individuals influenced by COVID-19 based on these findings. The findings may demonstrate the hypothesis that a winning strategy to combat SARS-CoV-2 infection could be the restoration of exhausted T-cells. In this review, we outline the potential protective function of the anti-PD-1 blockade against SARS-CoV-2 infection with the aim to develop SARS-CoV-2 therapy.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , SARS-CoV-2 , Animals , Antiviral Agents/immunology , COVID-19/immunology , Humans , Immune Checkpoint Inhibitors/immunology , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy/methods , Mice , Protective Agents/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , T-Lymphocytes/immunology
7.
J Immunother Cancer ; 9(7)2021 07.
Article in English | MEDLINE | ID: covidwho-1317020

ABSTRACT

The clinical and immunologic implications of the SARS-CoV-2 pandemic for patients with cancer receiving systemic anticancer therapy have introduced a multitude of clinical challenges and academic controversies. This review summarizes the current evidence, discussion points, and recommendations regarding the use of immune checkpoint inhibitors (ICIs) in patients with cancer during the SARS-CoV-2 pandemic, with a focus on patients with melanoma and renal cell carcinoma (RCC). More specifically, we summarize the theoretical concepts and available objective data regarding the relationships between ICIs and the antiviral immune response, along with recommended clinical approaches to the management of melanoma and RCC patient cohorts receiving ICIs throughout the course of the COVID-19 pandemic. Additional insights regarding the use of ICIs in the setting of current and upcoming COVID-19 vaccines and broader implications toward future pandemics are also discussed.


Subject(s)
COVID-19/immunology , Carcinoma, Renal Cell/immunology , Immune Checkpoint Inhibitors/immunology , Kidney Neoplasms/immunology , Melanoma/immunology , SARS-CoV-2/immunology , COVID-19/epidemiology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Carcinoma, Renal Cell/therapy , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Kidney Neoplasms/therapy , Melanoma/therapy , Pandemics/prevention & control , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
8.
Med Oncol ; 38(8): 90, 2021 Jun 30.
Article in English | MEDLINE | ID: covidwho-1287464

ABSTRACT

During the COVID-19 pandemic, it is important to assure the safety and management of cancer patients. Despite preliminary studies revealed that patients with cancer are more susceptible to infection and have poorer prognosis than other infected patients without cancer, mortality from COVID-19 in cancer patients appears to be principally driven by age, gender, and comorbidities. So, we have some comments about the pathogenesis attributed to the COVID-19 disease and cancer relationship and determination of subgroups in this and oncoming studies. Variable effects of anticancer treatments on the patient's immune system are yet to be elucidated. On the other hand, the effect of SARS-CoV-2 virus on tumor microenvironment or immune responses in cancer is not yet fully proven. Very recently, Challenor and her colleague reported a case with classical Hodgkin lymphoma with stage IIIs disease, which went into remission without corticosteroid or immunochemotherapy. They assumed that the putative mechanisms of action include cross-reactivity of pathogen-specific T cells with tumor antigens and natural killer cell activation by inflammatory cytokines produced in response to infection. During the course of COVID-19 disease, immune checkpoint blockade effect might be induced naturally.


Subject(s)
COVID-19/immunology , Neoplasms/immunology , SARS-CoV-2/immunology , Cross Reactions , Cytokines/immunology , Humans , Immune Checkpoint Inhibitors/immunology , Lymphocyte Activation , T-Lymphocytes/immunology , Tumor Microenvironment/immunology
9.
PLoS One ; 16(6): e0251731, 2021.
Article in English | MEDLINE | ID: covidwho-1285198

ABSTRACT

Immunotherapy using checkpoint blockade (ICB) with antibodies such as anti-PD-1 has revolutionised the treatment of many cancers. Despite its use to treat COVID-19 patients and autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis, the effect of hydroxychloroquine (HCQ) on cancer immunotherapy has not been examined. In this study, remarkably, we find that HCQ alone, or in combination with azithromycin (AZ), at doses used to treat patients, decreased the therapeutic benefit of anti-PD-1 in cancer immunotherapy. No deleterious effect was seen on untreated tumors. Mechanistically, HCQ and HCQ/AZ inhibited PD-L1 expression on tumor cells, while specifically targeting the anti-PD-1 induced increase in progenitor CD8+CD44+PD-1+TCF1+ tumor infiltrating T cells (TILs) and the generation of CD8+CD44+PD-1+ effectors. Surprisingly, it also impaired the appearance of a subset of terminally exhausted CD8+ TILs. No effect was seen on the presence of CD4+ T cells, FoxP3+ regulatory T cells (Tregs), thymic subsets, B cells, antibody production, myeloid cells, or the vasculature of mice. This study indicates for the first time that HCQ and HCQ/AZ negatively impact the ability of anti-PD-1 checkpoint blockade to promote tumor rejection.


Subject(s)
Hydroxychloroquine/pharmacology , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy , Programmed Cell Death 1 Receptor/immunology , Animals , Azithromycin/pharmacology , Cell Line, Tumor , Drug Antagonism , Immune Checkpoint Inhibitors/immunology , Melanoma/pathology , Mice , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL